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SUMMARY

The generalized integral transform technique (GITT) is employed in the hybrid numerical–analytical
solution of the stratified backward-facing step flow problem, with automatic global accuracy control
towards a user-prescribed accuracy target. The present paper is aimed at extending the available database
on benchmark results in heat and fluid flow, which were progressively obtained through integral
transforms, for the co-validation of more flexible fully discrete approaches. Numerical results are
presented for the situations more frequently encountered in the literature Copyright © 2001 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The research on computer simulation of heat and fluid flow problems is continuously
progressing towards the establishment of more robust and precise computational tools, in
parallel with dealing with the various challenging new problems posed by the industrial
demand for improvement. The literature has been witnessing the proposition of different test
problems for the cross-validation of well-known numerical methods, with increasing complex-
ity over the years and with more strict requirements on accuracy achievement. On the other
hand, the classical analytical approaches for partial differential equations (PDEs) have been
gaining a hybrid numerical–analytical structure, aimed at offering more reliable error control
schemes towards the construction of a reference results database, although this is still somehow
limited to simplified formulations due to the less flexible analysis required, in comparison with
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fully discrete approaches. The co-validation of such independent research efforts is a key factor
to the mutual progress enhancement and confidence building in these two closely related
investigation paths.

One such example of a proposed test problem in heat and fluid flow simulation was
motivated by the Minisymposia on Open Boundary Conditions, held in Swansea and Stanford,
in 1989 and 1991 respectively, when four test cases were defined to challenge the co-validation
of numerical procedures [1]. At that occasion, the backward-facing step (BFS) flow problem
was solved by Gartling [2] using a finite element procedure and a mesh of 8000 elements, with
excellent agreement when compared with experimental works (Dehan and Patrick [3]). More
recently, the same problem was solved by Perez Guerrero et al. [4] using the generalized
integral transform technique (GITT) [5], with a global relative error control of 10−4, yielding
full coincidence to four significant digits, at least, against the numerical results of Gartling [2].
Besides, a more thorough comparison with experimental results and previously reported
simulations was carried out in Reference [4], exploiting the automatic global accuracy control
feature inherent to the hybrid method implemented through integral transforms.

Motivated by such encouraging results, now the goal is to analyse the problem known as the
stratified backward-facing step (SBFS), also solved for the same minisymposium by Leone et
al. [6] through the finite elements method and a mesh of 38400 elements. Here it is handled
through the integral transform approach with user-prescribed accuracy. Due to the greater
challenge presented by this problem, in the form of a group of eddies situated within strongly
recirculating zones, it has deserved closer attention by the international numerical methods
community in recent years. Represented by a significant number of publications, such as in
Papanastasiou et al. [7], who proposed a new outflow boundary condition called a free
boundary condition, which is equivalent to extending the validity of the weak form of the
governing equations to the synthetic outflow instead of replacing them there with unknown
essential or natural boundary conditions. The authors tested this procedure for two different
domains: the long domain (truncated to 15 width units with 464 rectangular finite elements)
and the short domain (truncated to 7 width units). Also, Kobayashi et al. [8] solved the same
problem, using the finite volume method and a set of numerical outflow boundary conditions.
Manzan and Comini [9], using a streamfunction–vorticity formulation in a finite element
implementation, discuss that the inflow and not only the outflow boundary conditions are
crucial for a successful modelling of the SBFS problem.

A report about the minisymposium was written by Sani and Gresho [10], where they point
out that the actual objective of the event was not fully met. The present work intends to supply
additional information from a different point of view on this problem, which means to
analytically integral transform the problem in the finite transversal direction and to numeri-
cally solve the problem in the infinite longitudinal domain by using an exact scale contraction,
which now becomes straightforward when applied to the resulting transformed ordinary
differential equation (ODE) system. The hybrid nature of the proposed approach is based on
the analytical eigenfunction expansion of the original potentials in one of the space co-
ordinates, followed by the integral transformation for elimination of the dependence in this
same independent variable. The resulting transformed ODE system in the remaining space
co-ordinate is then numerically solved through algorithms for boundary value problems with
automatic error control capabilities.
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The GITT, as proposed and extended in different sources [4,5,11–20,26,27], is particularly
well-suited for benchmarking purposes, such as is intended, in light of its automatic global
error control capability, not so easily available in more general purpose fully discrete
approaches.

2. PROBLEM FORMULATION

The problem known as the SBFS flow is geometrically defined by two infinite parallel plates
between which a Newtonian fluid flows with specified boundary conditions at the inlet and
outlet of the channel (Figure 1), with a backward-facing step at the channel entrance. The
desired outcome is to find the characteristics of the flow development inside the channel
(temperature and velocity fields). Buoyancy effects in the SBFS problem are expected to
promote a stratified behaviour in the temperature contours, which are somehow deviated from
the expected patterns for a purely diffusive or forced convective situation.

Figure 1. Computational domain and boundary conditions for the flow problem (a) and thermal
problem (b).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 173–197
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The mathematical model is formulated once the following assumptions are considered:

– two-dimensional laminar steady flow;
– incompressible flow;
– constant fluid properties, except for the Boussinesq approximation;
– impervious and no-slip walls;
– Newtonian fluid.

The flow inside the duct is governed by the well-known Navier–Stokes and energy
equations, which, in terms of streamfunction formulation, are given by
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where the streamfunction, c(x, y), is defined from the velocity field in the following way:

u(x, y)=
(c(x, y)
(y

, 6(x, y)= −
(c(x, y)
(x

(4a,b)

As in previous developments of the GITT in handling flow problems [11–20,26,27], the
streamfunction-only formulation is usually preferred; although the method has also been
applied several times within the primitive variables formulation. The streamfunction formu-
lation provides the automatic satisfaction of mass conservation and completely eliminates
the pressure field from the computations, which would normally act as a source term in the
primitive variables choice, sometimes slowing down convergence. On the other hand, the
introduction of higher derivatives does not bring in any additional difficulties to the pro-
posed methodology, as will be clear in what follows, and is more closely discussed in
Reference [21].

The 12 boundary conditions required to solve Equations (1) and (3) (eight for the flow
problem and four for the thermal problem) are specified as follows:
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2.1. For the flow problem

—Impervious and no-slip duct walls

u(x, −1)=0; 6(x, −1)=0, x\0 (5a,b)

u(x, 1)=0; 6(x, 1)=0, x\0 (5c,d)

which, when represented in terms of the streamfunction, become

c(x, −1)=k1;
(c(x, −1)
(y

=0; c(x, 1)=k2;
(c(x, 1)
(y

=0 (6a–d)

where k1 and k2 are constants that specify the streamfunction values on the walls.

—Velocity profile is known at the duct entrance

u(0, y)= f1(y); 6(0, y)=0 (7a,b)

Using the streamfunction definition (4) and directly integrating one gets

c(0, y)=k1+
& y

−1

f1(j) dj ;
(c(0, y)
(x

=0 (8a,b)

—Fully parallel developed flow at x�� (Poiseuille flow)

u(�, y)= f2(y)=
3
2

q(1−y2); 6(�, y)=0 (9a,b)

or, in streamfunction terms

c(�, y)=k1+
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2
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where q is a mass balance coefficient which warrants the continuity satisfaction.
The constant k2 can be calculated from Equations (8a) or (10a). Using the latter

k2=k1+2q (11)

In this way, the flow problem is formulated just in terms of the streamfunction.
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2.2. For the thermal problem

—Known temperatures along the duct walls

T(x, −1)=0; T(x, 1)=1 (12a,b)

—Known temperature profile and insulated boundary at the duct entrance

T(0, y)=y, 0ByB1 (13)

(T(0, y)
(x

=0, −1ByB0 (14)

—Thermally fully developed flow at the duct outlet (Poiseuille flow)

T(x, y)=T�(y)=
1
2

(y+1), x�� (15)

3. GITT SOLUTION

To improve computational performance of the method (GITT) [5], it is convenient to perform
a boundary conditions homogenization in the co-ordinates to be eliminated through integral
transformation. The following analytic filters are then considered:

(a) For the flow problem

c(x, y)=f(x, y)+c�(y) (16)

where c�(y) represents the streamfunction at the fully developed region (c�(y)c(�, y))
and f(x, y) is the filtered potential.

(b) For the thermal problem

T(x, y)=u(x, y)+T�(y) (17)

where T�(y) represents the temperature field at the fully developed region (T�(y)T(�, y))
and u(x, y) is the filtered potential to be determined.

Substituting Equations (16) and (17) into Equations (1) and (3) and also into the boundary
conditions (6), (8) and (10) and (12)–(14), one obtains the formulation to be transformed
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with the required boundary conditions

f(x, −1)=0;
(f(x, −1)
(y

=0; f(x, 1)=0;
(f(x, 1)
(y

=0 (19a–d)
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f(�, y)=0;
(f(�, y)
(x

=0 (19g,h)

u(x, −1)=0; u(x, 1)=0 (20a,b)

u(0, y)=
1
2

(y−1), 0ByB1 (20c)

(u(0, y)
(x

=0, −1ByB0 (20d)

(u(x, y)
(x

=0, x�� (20e)

Therefore, the problem is now reformulated for the solution of the intermediate functions
f(x, y) and u(x, y).

3.1. Eigen6alue problems

In light of the homogeneous characteristics of the system (18)–(20) in the y-direction, the
eigenvalue problems will be chosen in this co-ordinate.

(a) For the flow problem
An eigenvalue problem associated with the homogeneous version of Equation (18a), well
detailed in Reference [11] and used in the solution of the Navier–Stokes equations via the
GITT [4,5,11–20], is defined as
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d4Yi(y)
dy4 =m i

4Yi(y) (21)

with boundary conditions

Yi(−1)=0;
dYi(−1)

dy
=0; Yi(1)=0;

dYi(1)
dy

=0 (22a–d)

where Yi(y) and mi are the eigenfunctions and eigenvalues associated with the flow problem,
which satisfy the following orthogonality property:

& 1

−1

YiYj dy=
!0, i" j

Ni, i= j
(23a,b)

and Ni is the norm or normalisation integral.
Equation (21) can be solved analytically, providing a linear combination of trigonometric

and hyperbolic functions

Yi(y)=

Á
Ã
Í
Ã
Ä

cos miy
cos mi

−
cosh miy
cosh mi

, i=1, 3, 5, . . .

sin miy
sin mi

−
sinh miy
sinh mi

, i=2, 4, 6, . . .
(24a,b)

The eigenvalues are found when the following transcendental equations are solved:

tanh mi=
!− tan mi, i=1, 3, 5, . . .

tan mi i=2, 4, 6, . . .
(25a,b)

The norm, defined by

Ni=
& 1

−1

Yi
2 dy, i=1, 2, 3, . . . (26)

presents the following numerical value:

Ni=2, i=1, 2, 3, . . . (27)

It is convenient to normalize the eigenfunctions for the next steps of the GITT procedure,
as
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Y0 i(y)=
Yi(y)
Ni

1/2 (28)

where Y0 i(y) represents the normalized eigenfunction.

(b) For the thermal problem
In this case, the chosen eigenvalue problem takes the following form:

d2zi(y)
dy2 +b i

2zi(y)=0 (29)

with the following boundary conditions:

zi(1)=0; zi(−1)=0 (30a,b)

The solution of this problem results in

zi(y)=sin[bi(y+1)], i=1, 2, 3, . . . (31)

where the eigenvalues bi are calculated from

bi=
ip
2

, i=1, 2, 3, . . . (32)

and in this case, the norm is given by

Òi=
& 1

−1

z i
2(y) dy=1, i=1, 2, 3, . . . (33)

3.2. The transformation process

(a) The flow problem
The use of the GITT is based on the idea that a function can be represented by an
eigenfunction expansion, originated from an auxiliary problem that has information about the
diffusion operators of the original partial differential formulation. Thus, it is proposed that,
for the flow problem, the function f(x, y) can be represented as

f(x, y)= %
�

i=1

f( i(x)Y0 i(y) (34)

where f( i(x) is the unknown function, which represents the coefficients to be determined in the
proposed expansion and depends only on ‘x ’.

A relation that allows us to define f( i(x) can be found by invoking the orthogonality
property of the eigenfunctions Y0 i(y). Operating both members of Equation (34) with 	−1

1 Y0 i dy
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& 1

−1

Y0 i(y)f(x, y) dy=
& 1

−1

Y0 i(y)
� %
�

j=1

f( jY0 j(y)
n

dy (35)

and reordering in a convenient way

& 1

−1

Y0 i(y)f(x, y) dy= %
�

j=1

f( j
& 1

−1

Y0 i(y)Y0 j(y) dy (36)

By the orthogonality property of Y0 i(y), it is easily deduced that the terms in the summation
of Equation (36) have non-zero values only when j= i, so

f( i(x)=
& 1

−1

Y0 i(y)f(x, y) dy (37)

The expression above defines the integral transform for the flow problem, indicating that the
original field can be transformed by its internal product with the eigenfunctions. The unknown
function is then called the transformed potential, f( i(x), while Equation (37) is known as the
transform formula. Equation (34), which recovers the original potential from the knowledge of
the transformed field, is called the inverse formula.

(b) The thermal problem
In the same way, the energy equation can be handled by the following inverse-transform pair

u(x, y)= %
�

i=1

u( i(x)z0 i(y) (38)

u( i(x)=
& 1

−1

z0 iu(x, y) dy (39)

where u( i(x) represents the transformed potential and z0 i(y) the normalized eigenfunction

z0 i=
zi(y)
Òi

1/2 (40)

The process of integral transformation of the PDEs (18a,b) into an ordinary differential
system begins when the operators 	−1

1 Y0 i dy and 	−1
1 z0 i dy are used on the respective equations

making use of the inverse definitions (34) and (38), which will allow us to reorder the terms
and to apply the orthogonality properties wherever possible. Then, we find for the flow
problem, the following transformed equations:
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Applying the same procedure to the energy equation
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where the coefficients can be analytically evaluated from the following integrals:
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dc�

dy
dy (43i,j)

Hijk=
& 1

−1

z0 i
dz0 j
dy

Y0 k dy ; Iik=
& 1

−1

z0 iY0 k dy (43k,l)

It should be noticed that Equations (41) and (42) present the same non-linear characteristics
of the original partial differential system, which are not removed by integral transformation.
The same transformation procedure is applied on the boundary conditions (19d–g) and
(20c–e), yielding the transformed conditions

f( i(0)=
& 1

−1

Y0 i
�& y

−1

f1(j) dj−
�3

2
y−

y3

2
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�
q
n
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df( i(0)
dx

=0; f( i(�)=0;
df( i(�)

dx
=0 (44b–d)

%
�

j=1

�du( j(0)
dx

Lij+u( j(0)Jij

�
−Ki=0 (45a)

u( i(�)=0 (45b)

where

Jij=
& 1

0

z0 iz0 j dy ; Ki=
& 1

0

z0 i(y−T�) dy ; Lij=
& 0

−1

z0 iz0 j dy (46a–c)

4. COMPUTATIONAL PROCEDURE

The original partial differential system was transformed into a non-linear ordinary differen-
tial system, infinite and coupled, with boundary conditions at two points. This system,
composed of Equations (41) and (42), with the boundary conditions (44) and (45), must be
solved by numerical procedures, as it is unlikely that analytical solutions may be obtained
to this non-linear formulation. One important characteristic of the present approach is the
convergence proof for increasing orders of the infinite expansion truncations [5]. This
characteristic indicates that it is possible to achieve final solutions with prescribed number
of ‘exact’ (converged) significant digits, under a dynamically determined number of terms in
the truncated expansions. The numerical solution of the truncated version of the above
ODE system can then be obtained by extensively tested algorithms, available in mathemati-
cal sub-routine libraries, such as the IMSL package [22]. This library offers the sub-routine
DBVPFD for solving non-linear ordinary differential problems with boundary conditions at
two points, including those that may present numerically stiff behaviour, implementing an
automatic local error control scheme. The algorithm is based on the PASVA3 [23] routine
and makes a discretization over a non-uniform mesh, which is chosen in a way to warrant
the same local error at any position. The resulting non-linear algebraic system is solved by
the generalized Newton method.

Since all intermediate computational tasks are controlled within the precision limits pre-
scribed by the user, it remains to control the truncation orders for the expansions and,
consequently, the ordinary differential system order, to achieve an automatic global error
control. The analytical nature of the present technique is then employed, implementing an
internal convergence test on the algorithm, at each spatial position where the solution
might be desired, through simple formulae such as
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o=max
ÃÃ
Ã
Ã
Ã

%
N+DN

i=N+1

Y0 i(y)f( i(x)

%
N+DN

i=1

Y0 i(y)f( i(x)+c�(y)

ÃÃ
Ã
Ã
Ã

(47)

incrementing, by intervals, the number of terms in the expansions truncation, until the o value
above satisfies the requested precision throughout the solution domain. In this way, the
algorithm itself controls the final truncation orders necessary to reach the user-prescribed
accuracy targets of selected potentials at specified locations.

Another implementation aspect to be discussed is related to the boundary conditions (44c,
d) and (45b), which are specified at infinity. In purely numerical methods, this difficulty is
normally overcame by considering the boundary conditions to be specified at a position ‘far
enough’ from the origin, until the error introduced by this domain truncation result is
insignificant. However, it is not possible to know, a priori, if such approximation will affect the
final results to within the requested global precision; therefore, it is then unavoidable to solve
the problem more than once, taking other domain truncation extents and verifying if a certain
convergence criterion is satisfied.

This difficulty is easily avoided by the present method using a scale contraction of the
independent variable x, redefining the domain from [0,�] to [0, 1]. The exact domain
contraction here considered was

h=1−e−cx (48)

where c is a scale compression parameter, which provides

dh

dx
=c(1−h) (49)

Thus, the problem is now solved in the contracted independent variable domain, with the
boundary conditions at infinity now exactly specified at h=1.

5. RESULTS AND DISCUSSIONS

As previously mentioned, the present approach was employed in the solution of the problem
proposed on the occasion of the Minisymposium on Open Boundary Conditions [1], first
analysed by Leone [6] and revisited by Papanastasiou et al. [7], Kobayashi et al. [8], and
Mazan and Comini [9]. Thus, the values of Reynolds, Froude and Peclet numbers were chosen
as equivalent to those in the cited investigations, which yields Re=1600, Fr=56.89 and
Pe=1600, considering the present definition of these parameters. Taking the Prandtl number
equal to unity (Pr=1.0), the Grashoff number becomes Gr=4.5×104, which results in the
same value for the Rayleigh number, Ra=4.5×104.
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Table I. Convergence analysis of longitudinal velocity component, u(x, y).

x=6.0NV=NT (CPU, s) x=30.0x=14.0

u(x, −0.9)
4 (4.) 0.2482 −0.0699 0.1071

0.11178 (26.) 0.3559 −0.0491
−0.0502 0.111512 (64.) 0.3762
−0.0498 0.11100.375516 (317.)

0.3727 −0.049620 (223.) 0.1110
−0.0496 0.111024 (834.) 0.3715

28 (1218.) 0.3711 0.1110−0.0496

u(x, −0.5)
0.1071 0.52781.2114

8 1.230 0.0961 0.5366
0.1027 0.535812 1.235

0.53460.10101.23416
20 1.232 0.53460.1006
24 1.232 0.53460.1005

0.1005 0.534628 1.232

u(x, 0.0)
4 0.7737 0.9110 0.8434

0.9016 0.84118 0.6833
0.9066 0.840912 0.6722

0.84090.90480.672316
0.673620 0.9042 0.8409

0.9040 0.840924 0.6741
0.84080.90400.674328

u(x, 0.5)
0.9454 0.53774 −0.0627
0.9370 0.5296−0.03308

0.530512 −0.0475 0.9329
16 −0.0431 0.9355 0.5316

0.53160.9359−0.043820
0.9360 0.531624 −0.0433
0.9360 0.531628 −0.0434

u(x, 0.9)
0.11034 −0.0430 0.1899

0.2169 0.10848 −0.0322
0.10880.2017−0.035612

16 −0.0365 0.2036 0.1094
20 −0.0365 0.2048 0.1094

0.205224 0.1094−0.0363
0.10940.205328 −0.0363

A computational code was written in FORTRAN77, running on a PC Pentium 266 MHz/64
Mb, with a relative error target of 10−3, with the convergence controlled to within 91 in the
third significant digit of the longitudinal velocity component, u(x, y). The CPU time spent in
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the worst case analysed, which required truncation orders in the two expansions of NV=
NT=28 was, approximately, 1200 s. The performance of the ODEs system solver (sub-routine
DBVPFD) was considerably enhanced by implementing a preliminary search for a more

Table II. Convergence analysis of temperature field, T(x, y).

x=30.0x=14.0NV=NT x=6.0

T(x, −0.9)
0.05620.02690.07944

0.0279 0.05598 0.1117
0.0292 0.055812 0.1193

0.1194 0.029016 0.0557
0.1193 0.0288 0.055720
0.1194 0.028824 0.0557

0.055728 0.02880.1194

T(x, −0.5)
0.3813 0.11364 0.2640

0.26710.11690.40298
0.1187 0.267012 0.4088

0.4082 0.118116 0.2667
0.11790.4072 0.266720

0.4071 0.1178 0.266724
0.1178 0.266728 0.4070

T(x, 0.0)
0.7957 0.49690.32764

8 0.8017 0.3250 0.5005
0.50030.32720.803112

0.8030 0.326616 0.4999
0.8025 0.326420 0.4999

0.49990.32640.802324
0.8022 0.3264 0.499928

T(x, 0.5)
0.9576 0.73130.65584

8 0.9315 0.6520 0.7325
0.9390 0.655312 0.7324

0.65450.9389 0.732016
0.9388 0.6542 0.732020

0.73200.65420.939024
0.9389 0.6542 0.732028

T(x, 0.9)
0.9249 0.94270.97894
0.9149 0.94428 0.9803

0.9852 0.921112 0.9442
0.92050.9858 0.944116

0.9857 0.9202 0.944120
0.9201 0.944124 0.9857

0.9857 0.9201 0.944128
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Figure 2. Convergence analysis of longitudinal velocity component profiles, u(x, y).

adequate initialization spatial mesh, obtained with increasing values of the governing parame-
ters and lower truncation orders (NV=NT=4, starting with Re=Pe=100), so as to identify
the recirculation regions along the x co-ordinate. The parameter of scale compression, c, also
has to be suitably chosen for a successful numerical integration of the ODEs system, and in the
present problem ranges from c=0.1, for Re=Pe=100, to c=0.0016 for Re=Pe=1600.

The history of the present eigenfunction expansion convergence process is illustrated in
Table I, for the longitudinal component of velocity, u, and Table II, for the temperature field,
T, and also represented to a graphical scale in Figures 2 and 3 respectively for x values of
interest selected from the literature.

From Table I it is observed that all velocity component values listed are converged up to
NV=NT=24, to within the third significant digit (considering the error control of 91 in the
third significant digit), and in various positions even to within the fourth digit at lower
truncation orders. The convergence in the position x=30 completely occurs at truncation
orders less than NV=NT=8, since positions next to the fully developed flow region are
expected to experience a faster convergence rate, once the filter chosen in Equation (16) more
closely reproduces the behaviour in this region. The required CPU time for each individual
truncation order run is shown between brackets right after the first column of Table I. It is
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interesting to note that it is possible to obtain graphical convergence, including the reproduc-
tion of the recirculation zones, with enough accuracy for most engineering purposes, at quite
low truncation orders (for instance, NV=NT=8) and consequently very low computational
effort (CPU time of 26 s only).

In the same way, full convergence to the third significant digit of the temperature field is
observed in Table II, with truncation orders as low as NV=NT=8, in a general way. Notable
exceptions occur for T(6, −0.9), which converged around NV=NT=16, and T(6, 0.9)
(convergence around NV=NT=20). Such behaviour is explained by the fact that, in the inlet
region of the channel where there is a strong recirculation zone, the proposed filter is not
effective in the reduction of the equations source terms importance, specially in positions very
close to the walls, as indicated by the quoted co-ordinates. This behaviour can be better
observed through Figures 2 and 3 for the graphical convergence illustration. To the graphical
scale, the results are essentially converged to much lower truncation orders than those pointed
out in the above discussions for the tabulated results.

Figure 3. Convergence analysis of temperature profiles, T(x, y).
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Figure 4. Comparison of longitudinal velocity component profiles, u(x, y).

Comparisons with literature data can be seen in Figures 4–7, where the good agreement
between the results from different sources for the longitudinal velocity component, u, the
temperature profiles, T, transversal velocity component, 6, and the streamfunction, c, respec-
tively, is noticed. The best overall agreement is offered by the present integral transform results
and the finite elements simulation of Leone [6], and the most significant deviations are
observed in the finite volumes simulation of Kobayashi et al. [8], especially for the transversal
velocity component profiles. Tabulated results were not readily available for a direct numerical
comparison.

Longitudinal steady state profiles of u, T and c are presented in Figures 8–11 respectively,
where the five eddies, expected from the solution of this problem, can be clearly observed.
These qualitative behaviours are in excellent agreement with the reference solution proposed
by Leone [6]. In Figure 10, the temperature contour map is plotted, which demonstrates the
thermally stratified behaviour of the problem. Also shown in Figure 11, is the evolution of the
steady state contours of the streamfunction as Re=Pe is gradually increased (with the
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corresponding variation of the Grashoff number), illustrating the progressive appearance of
further recirculation zones in the steady state flow structure.

6. CONCLUSIONS

The integral transform solution of the stratified flow over a backward-facing step is described
in detail, including the analytical derivations and the computational implementation. Numeri-
cal results are obtained for the test case previously considered in the open literature, and a
thorough convergence analysis is presented in different regions of the solution domain. The
fully converged results thus achieved provide a set of tabulated benchmark results for future
comparisons, while previously reported simulations are critically examined against the error-
controlled integral transform results, to a graphical scale.

Figure 5. Comparison of temperature profiles, T(x, y).
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Figure 6. Comparison of transversal velocity component profiles, 6(x, y).

The present approach may also be extended to include three-dimensional effects, following
recent developments on this technique, either directly in the primitive variables formulation
[24] or by employing the vector/scalar potentials formulation, as considered in Reference
[15,20] for cavity flow problems. In general, this type of approach is associated with
disadvantages related to an excessive analytical involvement and derivation effort, in contrast
to purely discrete methods. However, the new generation of mixed symbolical–numerical
computation platforms, as the Mathematica package [25] here employed for checking pur-
poses, has been permitting the elimination of this apparent difficulty for more wide spread use
of analytical-based techniques such as the one here advanced [20,26,27].

Recent developments on the GITT approach [13–20] shall allow for the extension of this
research towards the inclusion of additional effects and phenomena, such as turbulence,
irregular geometries, three-dimensional effects, transient regime, variable physical properties,
etc., aimed at offering a more complete co-validation basis to the numerical methods
community in heat and fluid flow.
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Figure 7. Comparison of streamfunction profiles, c(x, y).

Figure 8. Longitudinal u(x, y) profiles along the channel (Re=1600, Fr=512/9, Pe=1600).
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Figure 9. Longitudinal temperature profiles along the channel (Re=1600, Fr=512/9, Pe=1600).

Figure 10. Temperature contours (Re=1600, Fr=512/9, Pe=1600).

Figure 11. Evolution of steady state contours of the streamfunction (Fr=512/9).
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APPENDIX A. NOMENCLATURE

transformation coefficients obtained in the streamfunction andA, B, C, D, E, F, G, H,
I, J, K, L, M, N temperature integral transformation process

half spacing between parallel platesb
c scale compression parameter

hydraulic diameter, Dh=4bDh

longitudinal velocity component distribution at the channelf1

inlet
Fr Froude number, Fr= (U/uB)2, where uB= (ggDT/H1/2)H

modulus of the gravity vectorg
Grashoff number, Gr=Re2/FrGr
channel heightH
streamfunction and temperature eigenfunctions normsNi, Òi

respectively
truncation orders of streamfunction and temperatureNV, NT
expansions respectively
pressure, p=p*/rUp
Peclet number, Pe=Re ·PrPe

Pr Prandtl number, Pr=n/a
mass balance coefficient (q=1/2, for the present definitions ofq
f1 and f2)

Q, R, S, V, Z transformation coefficients obtained in the boundary
conditions integral transformation process

Ra Rayleigh number, Ra=Pr ·Gr
Reynolds number, Re=4Ub/nRe

T temperature, T= (T*−Tbottom* )/(T top* −Tbottom* )
longitudinal velocity component, u=u*/Uu

U mean velocity
transversal velocity component, 6=6*/U6
longitudinal and transversal coordinates respectively, x=x*/b,x, y
y=y*/b

Greek letters

a thermal diffusivity

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 173–197



R. RAMOS, J. S. PEREZ GUERRERO AND R. M. COTTA196

temperature eigenvaluesbi

volumetric expansion coefficientg

global error control parametero

f filtered streamfunction
domain contraction variableh

zi temperature eigenfunctions
streamfunction eigenvaluesmi

streamfunctionc

Subscripts and superscripts

i, j, k, l, m, n order of eigenquantity
indicates parameter, coefficient, velocity or temperature related�
to x��

— integral transformed quantity
� normalized quantity
* dimensional variable
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